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1 Introduction

During tile Mac-Europe campaign of 1991 several SAR experiments were carried out in the Flevoland

test area in the Netherlands. The t.estsite consists of a forested attd a agricultural area with more than

15 different crop types. Tile experiments took place in June and July (mid to late growing season).

The area was monitored by the spaceborne C-band VV polarised ERS-1, the Dutch airborne PHARS

with similar frequency and polarisation and the three-frequency (P-, L- and C-band) polarimetric AIR-

SAR system of NASA/JPL. The last system passed over on June 15, July 3, 12 and 28. The last two

dates coincided with the overpasses of the PttARS and the ERS-1. Comparison of the results showed

that backscattering coefficients from the three systems agree quite well (van den Brock and Gx'oot, 1993).

In this paper we present the results of a study of cro 1) type classification (section 2) and soil moisture

determination in the agricultural area (section 3). For these studies we used field averaged Stokes matrices

extracted froln the AIR SA R data ( processor version 3.55 or 3.56).

2 Classification of agricultural fields

Field averaged Stokes matrices contain five non-zero cross t)roducts (O'hh=<ShhS_h>, Gvv=<SvvS_v>,

Ohv_<,ShvShv> , p=<,ShhSvv>), where the lasl cross product is conlt)lex. The <S_oS_,o,,> products

are zero due to azimuthal symmetry. We use here two classification methods: a Gaussian nlaximum

likelihood (GML)metho(I which uses the l)olarimetric information directly and the so-called polarimetric

contrast classification (PCC) method whi(:h uses this information more indireclly. For the study of crop

type classification we have selected 330 agricultural fields with 8 crop-tyl)e classes (see Table)

crop type #fields crop type #fields

rapeseed 13 sugar beet 63

grass 41 corn 15

potato 86 barley 19

wheat 84 beans 9

2.1 Gaussian maxinmln likelihood classification

This method deals with feature vectors of arbitrary dimensionality. We can use single features as C-band

0 X__ / ,..,.0 _0 GO _ 0 0cr,,_ (ERS-I), full polarimetric vectors as "'--t"hh,",_, h_, P) or multi-temporal vectors as X--(G15/f,G317,

0 0
a12/r,_2s/r ) fox' one particular polarisation combination. We obtain ensemble statistics fox" every crop-type

class by calculating the mean vector #i=E[X;] and the cova.riance matrix Cij=E[(x_-#i)(xj-#a')l ] with E

the expectation value. Next we calculate for every field the distance function D defined by

1 ¥ _/zi)C/_I(.¥j ) (1)D-- lloglC[__(., i -#j

to all crop-type classes. The field is assigned to that crop-type class for which this distance is a nfinimum.

77



100

80 -

"_" 60

19
40 -

20 -

• I .... ! I ' "

I J i.._

C I I

i ' lI I

I I

polarimetric

I00

BO -

60 -

40 -

i

20 -

0

• I .... I .... I .... I "

I
I

C L I p
I

(

... n.(p) I .,. lu,(p) [ _,. L(p)

...."..,-,,,;":':..',.?,',...... . .'"".GII&

multitempora]

Figure 1: Classification results with the GML (full line) and PCC (dotted lille) method using polarimetric

(Fig. la, left) and multitemporal features (Fig. lb, right).

2.2 Polarimetric contrast classification

This method was originally introduced by Kong (1990). It uses the so-called optimum contrast A between

two Stokes matrices ,k.la and Mb, which is defined by

s T Ma s
A-

.qT _lt_.s
(2)

where the polarisation state of Stokes vector ._ is chosen such that A is an extrellllllll. In this method

first the ensemble averages of the Slokes matrices for" all crop-type classes are calculated. Then for each

field we calculate the optinlum conlrast with all crop-tyl)e classes and the field is assigned to that class

for which the opt.imum contrasl is a minimum.

2.3 Results

Single feature classification success percenlages are between 30 and 50_. (;euerally tim cr_h results are

0 l'eSll[t.s. The best results are obtained for t]le C- and L-band cry. on July 3.better than the c%_

The C- and L-band polarimetric success percentages are on average 60% for lhe PCC method and

80% for the GML method (see Fig. la). The P-trend resulls are signilicanllv lower for both methods,

since the hackscatter of the soil dominates l]ta.t of the vegelation here.

When single Dat.ures of the 4 dales are combined into multi-temporal foature vectors success per-

centages of 70 to S0% are found (see Fig. lb). so that it can be concluded that single day polarimetric

classification is more powerful than 4 day multitemporal classificalion in tim mid t.o late growing season.

This situation may change when also data (d)tained in the beginning of the growing season is used.

3 Soil moisture determination of vegetated soil

For bare soil it is in l)rincil)le possible using radar to measure the tot)-layer soil moisture content if the

soil roughness is known, since the radar t)acksca.tter from soil prinla.rily depends on lhe soil moisture

content and soil roughness, ttowever, when the soil is vegetated we have 1o know Ill(, lra.nsmissivity of

the vegetation layer and also lhe relative contributions in tile backsca.tter of Ill(, vegetation and of the

soil. This information cannot be obtained f,'om single frequency and single l)olarisation systems (e.g. the

ERS-1 ), but maybe obtained from the three-fl'equency polarimetric AIRSAR system. Every measurement

with this system delivers 15 feat ures (.5 lea! ures for each frequency band, see Sect. 2), which are certainly

not. all independent, so thai tile dimensionality of the data-set is less than 1.5. If the dimensionality of

the data-set remains high enough, however, the information can possibly be used to solve for the different

contributions in the backscatter of vegetated soil.
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3.1 Description of the method

In order to extract the different contributions ill the backscatter from vegetated soil we adopt the simple

model of Freeman and Durden (1992, hereafter tlle FD model). This model transforms the polarimetric

information/,,0 (7° (r° -_ into backscattering coefficients for diffuse, odd- and even-bounce scattering,_t'hh, vv, hv't']

which are related to the interaction of the microwave radiation with the vegetation, with the ground and

with both the vegetation and tile ground, respectively, ttere we assume this is true for at least the C- and

L-band. For the P-band the diffuse scattering is certainly also affected by the soil. The diffuse scattering

in the model is estimated by assuming that tile scatterers in the vegetation medium can be represented

by uniformly oriented and distributed small dipoles (needles). The ratio of the cross- and co-polarised

backscattering coefficient, which we call here the vegetation structure parameter 7", is in this case 1/3.

The derived backscattering coefficient for tile vegetation is directly related to this parameter.

The derived backscattering coefficient for the soil is related to the true backscattering coefficient by

0 = -,lC$, 0 O.t = 0 Oaa,oil (mÈ, , f, O) e -_t a,oit(mv, f, O)(Ttrue
(3)

where T I is tile two-way transmissivity of the vegetation layer depending on tile frequency f, cr' the

soil roughness, 0 tile incidence angle and m_ the volumetric soil lnoisture content. If we assume simi-

larly as ill the FD model that the vegetation 1)ackscattering is due to uniformly oriented small needles

the transmissivity is described by Tf=e -_f. If we have ill addition an accurate model describing the

backscattering coefficients of the soil as a function of the depending parameters, and if the soil roughness

a _ is known Eq. (3) contains only two unknowns a and m_. In that case we call solve for a and m_, once
the C- and L-band contributions of the soil are known from the FD model 1 As soil model we use the

empirical model of Oh el al. (1992) which is valid for incidence angles > 20 ° and frequencies > 1 Ghz.

During the campaign soil roughness measurements were performed for some agricultural fields with

different crop types in Flevoland which are however generally valid since the soil composition and cul-

tivation are quite homogeneous in Flevolan(l. We also obtained soil moisture measurements of a small

number of fields for the principal (:rop types (potatoes, wheat, sugar beet and maize) in a part of the

observed agricultural area. Since the soil for potatoes is cultivated in furrows and ridges, which is not

described by the model of Oh et al. and the scattering by wheat and maize is often dominated by even

bounce scattering (especially in the L-ban(t), we choose to use sugar beet in this study. We found 22

sugar beet fields in the selected area., which were vegetated during the three July overpasses.

3.2 Results

The soil roughness cr' is estimaled to t)e 1.2 cnl. (Vissers and van der Sall(len, 1993). Unfortunately, tile

uncertainty is rather large. Using this value for or' we solved for m_ and o re(luiring that tile residue is
less than 0.1 dB in both tile ('- and L-band. Ill this way we obtained solutions for 7, 8 and 18 fields

for July 3, 12 and 28. rest)ectively. In Fig. 2a we show histograms of m_, Tc and TL for July' 2S. The

average soil moisture content is 0.5 g cnl -a and the average transmissivity is 0.45 and 0.80 in the C- and

L-band, respectively.
The measured soil moisture coutent in three sugar beet fields is about 0.25 (Vissers and van der

Sanden, 1993) so that the derived value is too high, although values derived from radar measurement

may be somewhat higher due to the big water-rich roots of the sugar beet plant. Also tile value for the

transmissivity in the C-band is rather high, since Bouman (1991) found that tile vegetation layer of sugar

beet in the C-band is probably opaque, so that values less than 0.3 are expected for To.

It appears that the solutions are rather sensitive to the value of tile soil roughness parameter _r' and

to the vegetation structure parameter r. If we estimate this value from measurements in the C-band,

1A problem may be that the penetration depth is wavelength dependent (_ A/3), so that different frequencies probe

different soil moisture contents. We assume here that these differences are small in this context.
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Figure 2: Histograms of m,,Tc and T L (July 28), for a'=l.2 cm, r = 1/3 (Fig. 2a, left) and a'=l.5 cm,
r = 1/4 (Fig 2b, right).

assuming that the contribution of the vegetation dominates that of the soil (Bouman, 1991 ) we find values

of 0.2 - 0.3 for r, which is smaller than tile value of 1/3 in the FD model. Clearly the structure of the

sugar beet vegetation is also of importance and cannot simply be rel)resented by small needle scatterers.

If we now change the values for the vegetation structure parameter _- to 1/+1 and the soil roughness a' to

1.5 cm we obtain reasonable results for July 28 (see Fig. 21)).

For July 3 and 12 no solutions were obtained in most cases, since on average the C-band soil con-

tribution in the FD model is enhanced compared to the L-band soil contribution. This situation can be

explained when the vegetation s|rllcture parameter is lower for the C-band than for the L-band, which

would imply that in the period between ,July 12 and 28 a change in the slructure paralneters has oc-

curred. Indeed, measuremeuts with the ERS-1 in 1992 show a drop in backscattering fox" sugar beets

during this period, which is probably related to a change in the vegetation structui'e ( Rijckenberg, private
communication).

We conclude therefore that there is an addional free parameter in the FI) model, which <let>ends on

the vegetation structure an<t probably also on the frequency. Vegetation models like MIMICS (Ulaby el

al., 1990) may help to determine this parameter. Furthermore we nee<t to know the soil roughness <luite
accurately in order to apply lhis metho<l successfitllv.
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